GENERAL INFORMATION

Example 11 demonstrates design procedures for cast-in-place cantilever retaining walls supported on spread footing in conformance with AASHTO and Section 11.5 of this BDM. Horizontal earth pressure is applied based on the Coulomb earth pressure theory.

Example Statement: The retaining wall supports $15^{\prime}-0$ " of level roadway embankment measured from top of wall to top of footing. The wall will be built adjacent to the roadway shoulder where traffic is 2 ft . from the barrier face. The wall stem is 1 '-6" wide to accommodate mounting a Type 7 Bridge Rail to the top of wall. See Figure 3.

Starting Element Size Assumptions:

Total Footing Width $=70 \%$ to 75% of the design height
Footing Thickness $=10 \%$ of the design height
Toe Width $=10 \%$ of design height

MATERIAL PROPERTIES

Soil: CDOT Class 1 Backfill-Drained
Footing bears on soil
Soil unit weight
Angle of internal friction (backfill)
Wall-backfill friction angle
Coefficient of active earth pressure
Coefficient of passive earth pressure
Active equivalent fluid weight
Passive equivalent fluid weight

γ_{s}	$=$	0.130	kcf
ϕ	$=$	34	deg
$\delta=2 / 3 \phi$	$=$	22.67	deg
K_{a}	$=$	0.261	(Coulomb)

Subgrade: for bearing and sliding
Nominal design values are typically provided in the project-specific geotechnical report.
Nominal soil bearing resistance
Angle of internal friction (subgrade)
Wall-subgrade friction angle
Nominal soil sliding coefficient

$$
\begin{array}{rlcl}
\mathrm{q}_{\mathrm{n}} & = & 7.50 & \mathrm{ksf} \\
\phi_{\text {sub }} & = & 20 & \mathrm{deg} \text { (for sliding) } \\
\delta_{\text {sub }}=2 / 3 \phi_{\text {sub }} & = & 13.33 & \\
\text { deg (for shear key design) } \\
\mu_{\mathrm{n}}=\tan \phi_{\text {sub }} & = & 0.36 &
\end{array}
$$

Concrete: CDOT Concrete Class D
Concrete compressive strength
Concrete unit weight

$\mathrm{f}^{\prime} \mathrm{c}=$	4.50	ksi
γ_{c}	$=0.150$	kcf

Bridge Rail Type 7
Type 7 bridge rail weight $\quad \mathrm{w}_{\text {rail }}=0.486 \mathrm{klf}$
Center of gravity from wall back face $\quad \mathrm{X}_{\mathrm{c} . \mathrm{G} .}=6.84 \mathrm{in}$. (see Bridge Worksheet B-606-7A)

RESISTANCE FACTORS

When not provided in the project-specific geotechnical report, refer to the indicated AASHTO sections.

	$\phi_{\mathrm{D}}=$	0.55	AASHTO T.11.5.7-1
Bearing	$\phi_{\mathrm{T}}=$	1.00	AASHTO T.11.5.7-1
Sliding (concrete on soil)	$\phi_{\mathrm{T}-\mathrm{s}}=$	1.00	AASHTO T.11.5.7-1
Sliding (soil on soil)	$\phi_{\mathrm{ep}}=$	0.50	AASHTO T.10.5.5.2.2-1
Passive pressure	$\phi_{\mathrm{EE}}=$	1.00	AASHTO 11.5.8

WALL GEOMETRY INFORMATION

See Figure 1.
Stem Height
Top of Wall Thickness
Bottom of Wall Thickness
Width of footing
Thickness of Footing
Toe Distance
Height of fill over the toe
Minimum Footing embedment $\geq 3 \mathrm{ft}$.
Bridge Rail Type 7 Height
Wall Backface to vertical surcharge
Live Load Surcharge height
Vehicle Collision Load (TL-4)
Collision Load Distribution
Top of wall to point of collision impact on rail

$\mathrm{H}=$	15.00	ft.	
$\mathrm{~T}_{\text {Top }}$	$=$	1.50	ft.
$\mathrm{~T}_{\text {Bot }}$	$=$	1.75	ft.
$\mathrm{B}=$	10.00	ft.	

1. STABILITY CHECKS

Use the load combinations and factors from AASHTO 11.5.6 and BDM Section 11.5.1 for all loads acting on the retaining wall. Evaluate the retaining wall for the following:

1. Eccentricity
2. Sliding
3. Bearing

Note: The Geotechnical Engineer is responsible for evaluating global stability with consideration for both footing width and embedment.

APPLIED LOADS

Loads not listed here may be applicable for different design cases.
DC - dead load of structural components and nonstructural attachments
EH - horizontal earth pressure load
EV - vertical pressure from dead load of earth fill
CT - vehicular collision force
LS - live load surcharge

Figure 1 - Typical Section

Summary of Unfactored Loads and Moments

Resolve moments about Point A (see Figure 1 - Typical Section)

Vertical Loads \& Moments				
Load Type	Description	V (kip/ft.)	Moment Arm (ft.)	MV (kip-ft.)/ft.
DC_{1}	Stem dead load	3.38	3.50	11.83
DC_{2}	Stem dead load	0.28	4.33	1.21
DC_{3}	Footing dead load	1.88	5.00	9.40
DC_{4}	Barrier dead load	0.49	3.32	1.63
EV_{1}	Vertical pressure from dead load of fill on heel	10.73	7.25	77.79
EV_{2}	Vertical pressure from dead load of fill on heel	0.24	4.42	1.06
EV_{3}	Vertical pressure from dead load of fill on toe	0.72	1.38	0.99
EH_{V}	Vertical component of horizontal earth pressure	1.83	10.00	18.30
LS_{V}	Vertical component of live load surcharge	0.98	8.13	7.97

Horizontal Loads and Moments					
Load Type	Description	H $(\mathrm{kip} / \mathrm{ft}$)	Moment Arm (ft.)	MH $(\mathrm{kip}-\mathrm{ft}$)/ft.	
EH_{H}	Horizontal component of horizontal earth pressure	4.39	5.42	23.79	
LS_{H}	Horizontal component of live load surcharge	1.17	8.13	9.51	
CT	Vehicular collision load	2.61	18.92	49.38	

$E H_{V}=\sin (\delta) E H=\sin (\delta) 0.5 E F W(a)\left(H+T_{F}\right)^{2}$
$E H_{H}=\cos (\delta) E H=\cos (\delta) 0.5 E F W(a)\left(H+T_{F}\right)^{2}$
$L S_{V}=\gamma_{S} h_{\text {Sur }}\left(B-S-T_{\text {Top }}-\mathrm{R}\right)$
$L S_{H}=E F W(a) h_{\text {Sur }}\left(H+T_{F}\right)$

Note: The collision force (CT) is assumed to be distributed over a length of "Lt" ft. at the point of impact and is also assumed to spread downward to the bottom of the footing at a 45° angle. Conservatively, CT is assumed at the end of the wall where the force distribution occurs in one direction. See Figure 11-20 in Section 11 of this BDM.

Reinforcement between the Bridge Rail Type 7 and the wall interface is assumed to be adequate to transfer the collision load from the rail through the wall to the footing.
$C T=P_{C T} /\left(L_{t} / 2+\left(h_{C T}+H+T_{F}\right)\right)$

Load Combinations

The table that follows summarizes the load combinations used for the stability and bearing checks of the wall. To check sliding and eccentricity, load combinations Strength la and Extreme Event Ila apply minimum load factors to the vertical loads and maximum load factors to the horizontal loads. To check bearing, load combinations Strength Ib, Strength IV, and Extreme Event IIb apply maximum load factors for both vertical and horizontal loads.

CT load is considered with Extreme Event II limit state when checking eccentricity, sliding, and bearing.

Note: $\mathrm{LS}_{\mathrm{H}}, \mathrm{LS}_{\mathrm{V}}$, and EH_{H} are not included in Extreme Event Ila or IIb. It is assumed that the horizontal earth pressure is not activated due to the force of the collision deflecting the wall away from the soil mass at the instant of collision.
$L S_{V}$ is not applied when analyzing sliding and overturning; rather, it is applied only for load combinations that are used to analyze bearing (AASHTO 11.5.6, Figure C11.5.6-3a).

The service limit state is used for the crack control check and settlement.

$$
\text { Total factored force effect: } \quad Q=\Sigma \eta_{i} \gamma_{i} Q_{i}
$$

AASHTO 3.4.1-1
where $Q_{i}=$ force effects from loads calculated above

Load Modifiers:	Ductility	$\eta_{D}=$	1.00
	Redundancy	$\eta_{\mathrm{r}}=$	1.00
	Operational Importance	$\eta_{I}=$	1.00

AASHTO 1.3.3-1.3.5
$\eta_{1}=\quad 1.00$

Load Factors:

Load Combination	$\gamma_{\text {DC }}$	γ_{Ev}	$\gamma_{\text {Ls_v }}$	$\gamma_{\text {LS_H }}$	$\gamma_{\text {EH }}$	$\gamma_{C T}$	Application
Strength la	0.90	1.00	-	1.75	1.50	-	Sliding, Eccentricity
Strength lb	1.25	1.35	1.75	1.75	1.50	-	Bearing, Strength Design
Strength IV	1.50	1.35	-	-	1.50	-	Bearing
Extreme Ila	0.90	1.00	-	-	-	1.00	Sliding, Eccentricity
Extreme llb	1.25	1.35	-	-	-	1.00	Bearing
Service I	1.00	1.00	1.00	1.00	1.00	-	Wall Crack Control

Summary of Load Groups:

Load Combination	Vertical Load \& Moment		Horizontal Load \& Moment	
	V (kip/ft.)	MV (kip-ft.)/ft.	H (kip/ft.)	MH (kip-ft.)/ft.
Strength la	19.86	128.95	8.63	52.33
Strength Ib	27.78	179.27	8.63	52.33
Strength IV	27.57	171.34	6.59	35.69
Extreme Ila	17.12	101.50	2.61	49.38
Extreme IIb	23.32	137.87	2.61	49.38
Service I	20.53	130.18	5.56	33.30

Eccentricity (Overturning) Check

When a shear key is required to prevent sliding, the passive resistance shall be ignored.

Bearing Resistance Check

When a shear key is required to prevent sliding, the passive resistance shall be ignored.

Sliding Check

AASHTO 10.6.3.4
Per AASHTO 11.6.3.5, passive soil pressure shall be neglected.

Strength la and Extreme Ila:

Maximum total Horizontal force	$\Sigma \mathrm{H}=$	8.63	$\mathrm{kip} / \mathrm{ft}$.	
Maximum total Vertical force	$\Sigma \mathrm{V}=$	19.86	$\mathrm{kip} / \mathrm{ft}$.	
Nominal passive resistance	$\mathrm{R}_{\mathrm{ep}}=$	0.00	$\mathrm{kip} / \mathrm{ft}$.	AASHTO 11.6.3.5
For concrete cast against soil	$C=$	1.00	AASHTO EQ 10.6.3.4-2	
Nominal soil sliding coefficient	$\mu_{n}=\tan \phi_{\text {sub }}$	$=0.360$		
Nominal sliding resistance	$R_{\tau}=C \Sigma V \mu_{n}$	$=1.0(19.86)(0.360)=$	$7.15 \quad \mathrm{kip} / \mathrm{ft}$.	

Factored resistance against failure by sliding

$$
\begin{array}{rc}
R_{R}=\phi R_{n}=\phi_{\tau} R_{\tau}+\phi_{e p} R_{e p}= & 1.00(7.15)+0.50(0.0)=7.15 \quad \mathrm{kip} / \mathrm{ft} . \\
\mathrm{R}_{\mathrm{R}}<\quad \Sigma \mathrm{H} & \text { Shear Key is Required }
\end{array}
$$

Shear Key Design

1. Assume shear key dimensions.
2. Center line of the shear key is approximately $B / 3$ from the heel edge of the footing; see BDM Section 11.5.1.
3. Passive soil pressure at the toe shall be neglected; only include passive pressure due to the inert block (c) (see AASHTO 11.6.3.5).
4. Depth of inert block is taken to be the sum of the key depth and the effective wedge depth. This example follows this methodology. Conservatively, effective wedge depth can be ignored, allowing inert block to be equal to shear key depth.
5. Per BDM Section 11.5.1, the top 1 ft . of fill at the toe shall be ignored for all design cases.
6. The Designer may choose to add weight of the shear key for eccentricity and bearing analysis once shear key dimensions are confirmed. For this example, weight of the key is ignored.

Figure 2 - Shear Key

Shear resistan	betwee	soil and fou	ndation	$\begin{aligned} & \phi_{\tau} R_{\tau}=C R_{1} \mu_{u s-s} \cos \delta_{s u b}+C R_{2} \mu_{u} \\ & \phi_{E E} R_{\tau}=C R_{1} \mu_{u E E} \cos \delta_{S u b}+C R_{2} \mu_{u E E} \end{aligned}$					(Strength la) (Extreme lla)
$X=\left(\Sigma M_{V}-\Sigma\right.$	/LV		$=\frac{B}{2}-X$						
Load Combination	$\underset{(\text { kip/ft.) }}{\Sigma V}$	$\underset{\text { (kip-ft./ft.) }}{\sum \mathrm{MV}}$	$\underset{\text { (kip-ft./ft.) }}{\sum \mathrm{MH}}$	$\begin{gathered} \mathrm{X} \\ \text { (ft.) } \end{gathered}$	$\begin{gathered} \mathrm{e} \\ \text { (ft.) } \end{gathered}$	$\begin{gathered} \sigma_{\mathrm{V}} \\ (\mathrm{ksf}) \end{gathered}$	$\underset{(\mathrm{kip} / \mathrm{ft} .)}{\mathrm{R} 1}$	$\underset{(\mathrm{kip} / \mathrm{ft} .)}{\mathrm{R} 2}$	$\begin{gathered} \phi \mathrm{RT}^{2} \\ (\mathrm{kip} / \mathrm{ft} .) \end{gathered}$
Strength la	19.86	128.95	52.33	3.86	1.14	2.57	11.42	8.44	7.04
Extreme lla	17.12	101.50	49.38	3.04	1.96	2.82	9.84	7.28	6.07

Passive resistance of soil available throughout the design life of structure:
$R_{e p}=E F W(p) 0.5\left(y_{1}+y_{2}\right) c=0.988 * 0.5(2.25+4.61) 2.36=8.00$ kip

Factored resistance against failure by sliding:
AASHTO 10.6.3.4

Strength la:	Maximum total Horizontal force $R_{R}=\varphi R_{n}=\varphi_{\tau} R_{\tau}+\varphi_{e p} R_{e p}=$	$\begin{gathered} \Sigma \mathrm{H}=8.63 \text { kip } \\ 7.04+0.50(8.00)= \end{gathered}$	11.04	kip	
			R_{R}	$>\quad \mathrm{LH}$	OK
Extreme lla:	Maximum total Horizontal force	$\Sigma \mathrm{H}=2.61$ kip			
	$R_{R}=\varphi R_{n}=\varphi_{E E} R_{\tau}+\varphi_{e p} R_{e p}=$	$6.07+0.50$ (8.00) $=$	10.07	kip	

2. STRENGTH DESIGN

2.1 STEM WALL DESIGN

Summary of Unfactored Horizontal Loads and Moments at the Bottom of the Stem:

Load Type	Description	H (kip/ft.)	Moment Arm (ft.)	MH (kip-ft.)/ft.
EH_{H}	Soil	3.74	5.00	18.70
LS_{H}	Surcharge	1.08	7.50	8.10

Summary of Load Groups:

Load Combination	Horizontal Load \& Moment	
	Vu (kip/ft.)	Mu (kip-ft.)/ft.
Strength Ib	7.50	42.23
Service I	4.82	26.80

It has been assumed that the load combination Strength lb generates the maximum moment at the interface of the stem wall and footing. However, the Designer should check all possible load combinations, including extreme event, and select the combination that produces the maximum load for the design of the stem.

Note: The Designer/Engineer is encouraged to use engineering judgment to determine the moment and required area of reinforcing steel at other points of the stem for tall walls ($\mathrm{H} \geq 10.0^{\prime}$) to reduce the amount of steel required at higher elevations.

2.1.1 Flexure Design

AASHTO 5.6.3.2
Design of vertical reinforcement bars at back face of stem

Assumed bar size	Bar $=$	$\# 5$	
Factored applied moment	$M_{u S t r}=$	42.23	kip-ft. / ft.
Concrete clear cover	$r=$	2.00	in.
Bar diameter	$d_{b}=$	0.625	in.
Bar area	$A_{b}=$	0.310	in^{2}
Effective Depth	$d_{e}=T_{\text {Bot }}-r-d_{b} / 2=$	$1.75^{\prime}(12)-2 "-0.625^{\prime \prime} / 2=$	18.69

Try \#5 @ 6.0" on center:

Design steel area	$\mathrm{A}_{\text {S }}=\mathrm{A}_{\mathrm{b}} \mathrm{b} / \mathrm{spa}=$	0.310 (12) / $6=$	0.620	in ${ }^{2} / \mathrm{ft}$.
Distance from compression fiber to neutral axis	$C_{b}=\frac{A_{s} f_{y}}{\beta_{1} 0.85 f_{c}^{\prime} b}=$	0.620 (60) / ($\left.0.825^{*} 0.85 * 4.5 * 12\right)=$	0.982	in.
Equivalent Stress Block	$a=\beta_{1} C_{b}=$	0.825 (0.982) $=$	0.810	in.
Nominal Flexural Resistance	$M_{n}=A_{S} f_{y}\left(d_{e}-\frac{a}{2}\right)=$	$0.620(60)(18.69-0.810 / 2)=$	56.68	kip-ft.
Factored Flexural Resistance	$\mathrm{M}_{\mathrm{R}}=\phi_{\mathrm{f}} \mathrm{M}_{\mathrm{n}}=$	0.90 (56.68) =	51.01	kip-ft.
		M_{R}	$\mathrm{M}_{\mathrm{u} \text { Str }}$	OK

Maximum Reinforcement: Provision deleted in 2005

Minimum Reinforcement:
AASHTO 5.6.3.3
The amount of tensile reinforcement shall be adequate to develop a factored flexural resistance,
M_{R}, at least equal to the lesser of $1.33 M_{u \text { str }}$ or $M_{c r}$

Member width	$b=$	12.00	in.
Member depth	$d=T_{\text {Bot }}=$	21.00	in.
Distance to Neutral Axis	$y_{t}=T_{\text {Bot }} / 2=$	10.50	in.
Stem moment of inertia	$\mathrm{I}_{\mathrm{g}}=\mathrm{bd} / 12=$	9261.0	in^{4}
Section modulus	$\mathrm{S}_{\mathrm{nc}}=\mathrm{S}_{\mathrm{c}}=\mathrm{I}_{\mathrm{g}} / \mathrm{y}_{\mathrm{t}}=$	882.0	in^{3}

Concrete Modulus of Rupture $\quad f_{r}=0.24 \sqrt{f_{c}^{\prime}}=0.509 \mathrm{ksi}$

AASHTO 5.4.2.6

Cracking moment, $\quad M_{c r}=y_{3}\left[\left(y_{1} f_{r}+y_{2} f_{c p e}\right) S_{c}-M_{d n c}\left(\gamma_{c} / \gamma_{n c}-1\right)\right]:$
AASHTO 5.6.3.3-1
Flexural cracking variability factor

$$
\begin{aligned}
& \mathrm{y}_{1}=1.600 \\
& \mathrm{y}_{2}=0.000
\end{aligned}
$$

Prestress variable factor
Ratio of specified minimum yield strength to ultimate tensile strength of the reinforcement
$y_{3}=0.670$ for A615, Grade 60 steel
Compressive stress due to prestress force
$f_{\text {cpe }}=0.000 \mathrm{ksi}$
Total unfactored dead load moment
$M_{\mathrm{dnc}}=0.000$ kip-in.
Cracking moment,

$\mathrm{M}_{\mathrm{cr}}=$	0.670 [(1.60 * 0.	-0]/12 =	40.11	kip-ft./ft.	- controls
Factore	d moment *1.33	$1.33 \mathrm{M}_{\text {UStr }}=$	56.17	kip-ft./ft.	
Factore	al resistance	$\mathrm{M}_{\mathrm{R}}=$	51.01	kip-ft./ft.	

Control of cracking by distribution of reinforcement:

AASHTO 5.6.7

2.1.2 Shear Design

AASHTO 5.7.3.3

Shear typically does not govern the design of retaining walls. If shear becomes an issue, the thickness of the stem should be increased. Ignore benefits of the shear key (if applicable) and axial compression.
$\begin{array}{lllll}\text { Factored shear load } & V_{\mathrm{u} \text { str }}= & 7.50 & \mathrm{kip} / \mathrm{ft} . \\ \text { Effective Depth }\end{array} \quad \mathrm{d}_{\mathrm{V}}=\max \left(\mathrm{d}_{\mathrm{e}}-\mathrm{C}_{\mathrm{b}} / 2,0.9 d_{e}, 0.72 T_{\text {Bot }}\right)=\begin{array}{lll}18.20 & \text { in (shear) } & \text { AASHTO 5.7.2.8 }\end{array}$

Per AASHTO 5.7.3.4.1, this section does not qualify for simplified procedure for determining shear resistance parameters. General procedure will be used (AASHTO 5.7.3.4.2).

Longitudinal tensile strain in the section

$$
\varepsilon_{s}=\frac{\left(\frac{\left|M_{u}\right|}{d_{v}}+0.5 N_{u}+\left|V_{u}-V_{p}\right|-A_{p s} f_{p o}\right)}{E_{s} A_{s}+E_{p} A_{p s}}
$$

Removing all prestress steel unknowns, $\quad \varepsilon_{s}=\frac{\left(\frac{\left|M_{u}\right|}{d_{v}}+0.5 N_{u}+\left|V_{u}\right|\right)}{\Gamma \wedge}$ the eauation will be as follows:

Where,

Retaining wall footings and stems are typically unreinforced for shear. Confirm

transverse reinforcement is not required by design,	$0.5 \mathrm{~V}_{\mathrm{R}}$
	$0.5 \mathrm{~V}_{\mathrm{R}}=$

2.1.3 Shrinkage and Temperature Reinforcement Design

AASHTO 5.10.6
Horizontal reinforcement at each face of stem and vertical reinforcement at front face of stem

Try \#4 @ 12.0" on center:	Design steel area	$\mathrm{A}_{\mathrm{S}}=0.200 \quad \mathrm{in}^{2}$		
	Check	$A_{s} \geq \frac{1.30 b T_{B o t}}{2\left(b+T_{B o t}\right) f_{y}}=$	$0.083 \mathrm{in}^{2}$	OK
	Check	$0.11 \leq A_{s} \leq 0.60$		OK

2.2 FOOTING HEEL DESIGN

The critical section for shear and moment is at the back face of the stem wall (C5.13.3.6). The heel is designed to carry its self weight and the soil block above it. Conservatively, it is common to ignore upward soil reaction under the footing heel, thus Strength 1 b is not checked. For shear in footings, the provisions of 5.8.2.4 are not applicable, thus $\phi \mathrm{Vc} \geq \mathrm{Vu}$.

Summary of Unfactored Vertical Loads and Moments at the Back Face of the Stem:

Load Type	Description	V (kip/ft.)	Moment Arm (ft.)	M (kip-ft.)/ft.
DC	Heel dead load	1.03	2.75	2.83
EV_{1}	Vertical pressure from dead load of fill on heel	10.73	2.75	29.51

Summary of Load Groups:

Load Combination	Vertical Load \& Moment	
	Vu (kip/ft.)	Mu (kip-ft.)/ft.
Strength IV	16.03	44.08
Service I	11.76	32.34

By inspection, load combination Strength IV generates a maximum moment at the interface of the footing heel and stem wall. However, the Designer should check all possible load combinations and select the combination that produces the maximum load for the design of the footing.

For reinforcement design, follow the procedure outlined in Section 2.1. Exposure Class I can be used for cracking check. Results of the design are as follows (also shown on Figure 3):

Transverse horizontal bar at top of footing -
Longitudinal reinforcement, top and bottom of footing -

$\# 6$	$@$	$6.0^{\prime \prime}$
$\# 4$	$@$	$12.0^{\prime \prime}$

2.3 FOOTING TOE DESIGN

The critical section for shear is d_{v} from front face of wall stem and, for moment, is at the front face of wall stem (C5.13.3.6). Section is designed to resist bearing stress acting on toe. This example conservatively ignores the soil on top of the toe. For shear in footings, the provisions of 5.8.2.4 are not applicable, thus $\phi \mathrm{Vc} \geq \mathrm{Vu}$.

Controlling loads:

Maximum bearing stress (factored)	$\sigma_{\mathrm{V}}=$	3.08	ksf	(from bearing resistance check)
Factored shear	$\mathrm{V}_{\mathrm{u} \text { str }}=\sigma_{\mathrm{V}} \mathrm{S}=$	8.47	$\mathrm{kip} / \mathrm{ft}$.	
Factored bending moment	$\mathrm{M}_{\mathrm{u} \text { str }}=\mathrm{V}_{\mathrm{u}} \mathrm{S} / 2=$	11.65	kip -ft./ft.	

Service loads:
$X=\left(\Sigma M_{V}-\Sigma M_{H}\right) / \Sigma V=$
$\mathrm{e}=\mathrm{B} / 2-\mathrm{X}=$
$(130.18-33.30) / 20.53=$
4.72 ft .
$10.0 / 2-4.72=$
0.28 ft .
$\sigma_{V}=\quad \Sigma V /(B-2 e)=$
20.53 / (10.0-2 (0.28)) =
2.17 ksf

Factored shear
$V_{\text {u serv }}=\sigma_{V} S=5.97 \quad \mathrm{kip} / \mathrm{ft}$.
Factored bending moment
$M_{u \text { serv }}=V_{u} S / 2=8.21 \quad$ kip-ft./ft.

For reinforcement design, follow the procedure outlined in Section 2.1. Results of the design are as follows (also shown on Figure 3):

Transverse horizontal bar at bottom of toe - \#5 @ 6.0"
Note: Check that the toe length and footing depth can accommodate development length of the hooked bar past the design plane.

2.4 SHEAR KEY DESIGN

The critical section for shear and moment is at the interface with the bottom of the footing. Shear key reinforcing is designed to resist passive pressure determined in the sliding analysis. Passive pressure load resultant is located at a

distance " z " trom the bottom ot tooting, it using inclined wedge (see Figure 2).
Passive pressure against inert block $\quad \mathrm{R}_{\mathrm{ep}}=8.00 \mathrm{kip}$
Moment arm $\quad z=\left(0.5 K_{p} \gamma_{s} y_{1} c^{2}+0.333 K_{p} \gamma_{s} c^{3}\right) / R_{e p}=$

$$
\begin{aligned}
& =\left[0.5(7.60)(0.130)(2.25)(2.36)+0.333(7.60)(0.130)(2.36)^{2}\right] / 8.00=1.31 \mathrm{ft} . \\
& \text { Factored bending moment for key design } \quad \mathrm{M}_{\mathrm{u} \text { str }}=10.48 \text { kip-ft./ft. }
\end{aligned}
$$

For reinforcement design, follow the procedure outlined in Section 2.1. Results of the design are as follows (also shown on Figure 3):

Vertical 'U' bars at front and back face of shear key Longitudinal reinforcement in shear key -

$\# 4$	$@$	$6.0^{\prime \prime}$
$\# 4$	$@$	$12.0^{\prime \prime}$

Figure 3 - Final Wall Section

