EXAMPLE 11 - CAST-IN-PLACE CONCRETE CANTILEVER RETAINING WALL

GENERAL INFORMATION

Example 11 demonstrates design procedures for cast-in-place cantilever retaining walls supported on spread footing in conformance with AASHTO and Section 11.5 of this BDM. Horizontal earth pressure is applied based on the Coulomb earth pressure theory.

Example Statement: The retaining wall supports 15'-0" of level roadway embankment measured from top of wall to top of footing. The wall will be built adjacent to the roadway shoulder where traffic is 2 ft. from the barrier face. The wall stem is 1'-6" wide to accommodate mounting a Type 7 Bridge Rail to the top of wall. See Figure 3.

Starting Element Size Assumptions:

Total Footing Width = 70% to 75% of the design height

Footing Thickness = 10% of the design height

Toe Width = 10% of design height

MATERIAL PROPERTIES

Soil: CDOT Class 1 Backfill-Drained

Looting	hooro	0n	001
	Deals	())))	SOIL
	DOGIO	~	0011

Soil unit weight	$\gamma_s =$	0.130	kcf	
Angle of internal friction (backfill)	φ =	34	deg	
Wall-backfill friction angle	$\delta = 2/3\phi =$	22.67	deg	
Coefficient of active earth pressure	K _a =	0.261	(Coulomb)	AASHTO Eq. 3.11.5.3-1
Coefficient of passive earth pressure	K _p =	7.60		AASHTO Fig. 3.11.5.4-1
Active equivalent fluid weight	EFW (a) = $K_a \gamma_s$ =	0.036	kcf (36 pcf min)	BDM 11.5
Passive equivalent fluid weight	EFW (p) = $K_p \gamma_s$ =	0.988	kcf	

Subgrade: for bearing and sliding

Nominal design values are typically provided in the project-specific geotechnical report.

Nominal soil bearing resistance	q _n =	7.50	ksf
Angle of internal friction (subgrade)	$\phi_{Sub} =$	20	deg (for sliding)
Wall-subgrade friction angle	$\delta_{Sub} = 2/3 \varphi_{Sub} =$	13.33	deg (for shear key design)
Nominal soil sliding coefficient	μ_n = tan ϕ_{Sub} =	0.36	AASHTO C.10.6.3.4
Concrete: CDOT Concrete Class D			
Concrete compressive strength	f'c =	4.50	ksi
Concrete unit weight	γ _c =	0.150	kcf
Bridge Rail Type 7			
Type 7 bridge rail weight	w _{rail} =	0.486	klf
Center of gravity from wall back face	X _{C.G.} =	6.84	in. (see Bridge Worksheet B-606-7A)

RESISTANCE FACTORS

When not provided in the project-specific geotechnical report, refer to the indicated AASHTO sections.

Bearing	φ _b =	0.55	AASHTO T.11.5.7-1
Sliding (concrete on soil)	φ _T =	1.00	AASHTO T.11.5.7-1
Sliding (soil on soil)	φ _{T s-s} =	1.00	AASHTO T.11.5.7-1
Passive pressure	φ _{ep} =	0.50	AASHTO T.10.5.5.2.2-1
Extreme event	φ _{EE} =	1.00	AASHTO 11.5.8

WALL GEOMETRY INFORMATION

See Figure 1.					
Stem Height	H =	15.00	ft.		
Top of Wall Thickness	T _{Top} =	1.50	ft.		
Bottom of Wall Thickness	T _{Bot} =	1.75	ft.		
Width of footing	В =	10.00	ft.		
Thickness of Footing	T _F =	1.25	ft.		
Toe Distance	S =	2.75	ft.		
Height of fill over the toe	H _{TF} =	2.00	ft.		BDM 11.5.1
Minimum Footing embedment \geq 3 ft	$H_{TF} + T_F =$	3.25	ft.	ОК	BDM 11.5.1
Bridge Rail Type 7 Height	H _B =	2.92	ft.		
Wall Backface to vertical surcharge	R =	2.00	ft.		
Live Load Surcharge height	h _{Sur} =	2.00	ft.		AASHTO Table 3.11.6.4-2
Vehicle Collision Load (TL-4)	P _{CT} =	54.00	kip		AASHTO Table A13.2-1
Collision Load Distribution	L _t =	3.50	ft.		AASHTO Table A13.2-1
Top of wall to point of collision impact on rail	h _{CT} =	2.67	ft.		

1. STABILITY CHECKS

Use the load combinations and factors from AASHTO 11.5.6 and BDM Section 11.5.1 for all loads acting on the retaining wall. Evaluate the retaining wall for the following:

- 1. Eccentricity
- 2. Sliding
- 3. Bearing

Note: The Geotechnical Engineer is responsible for evaluating global stability with consideration for both footing width and embedment.

APPLIED LOADS

Loads not listed here may be applicable for different design cases.

- DC dead load of structural components and nonstructural attachments
- EH horizontal earth pressure load
- EV vertical pressure from dead load of earth fill
- CT vehicular collision force
- LS live load surcharge

Figure 1 - Typical Section

===========

February 2024

Summary of Unfactored Loads and Moments

Resolve moments about Point A (see Figure 1 - Typical Section)

	Vertical Loads & Moments							
Load Type	Description	V (kip/ft.)	Moment Arm (ft.)	MV (kip-ft.)/ft.				
DC ₁	Stem dead load	3.38	3.50	11.83				
DC ₂	Stem dead load	0.28	4.33	1.21				
DC ₃	Footing dead load	1.88	5.00	9.40				
DC ₄	Barrier dead load	0.49	3.32	1.63				
EV ₁	Vertical pressure from dead load of fill on heel	10.73	7.25	77.79				
EV ₂	Vertical pressure from dead load of fill on heel	0.24	4.42	1.06				
EV ₃	Vertical pressure from dead load of fill on toe	0.72	1.38	0.99				
EHv	Vertical component of horizontal earth pressure	1.83	10.00	18.30				
LS _V	Vertical component of live load surcharge	0.98	8.13	7.97				

Horizontal Loads and Moments							
Load Type	Description	H (kip/ft.)	Moment Arm (ft.)	MH (kip-ft.)/ft.			
EH _H	Horizontal component of horizontal earth pressure	4.39	5.42	23.79			
LS _H	Horizontal component of live load surcharge	1.17	8.13	9.51			
СТ	Vehicular collision load	2.61	18.92	49.38			

$$\begin{split} EH_V &= \sin(\delta) \, EH = \sin(\delta) \, 0.5 \, EFW(a) \, (H+T_F)^2 \\ EH_H &= \cos(\delta) \, EH = \cos(\delta) \, 0.5 \, EFW(a) \, (H+T_F)^2 \\ LS_V &= \gamma_s \, h_{Sur} \, (B-S \, -T_{Top} - R) \\ LS_H &= EFW(a) h_{Sur} \, (H+T_F) \end{split}$$

Note: The collision force (CT) is assumed to be distributed over a length of "Lt" ft. at the point of impact and is also assumed to spread downward to the bottom of the footing at a 45° angle. Conservatively, CT is assumed at the end of the wall where the force distribution occurs in one direction. See Figure 11-20 in Section 11 of this BDM.

Reinforcement between the Bridge Rail Type 7 and the wall interface is assumed to be adequate to transfer the collision load from the rail through the wall to the footing.

$$CT = P_{CT} / (L_t / 2 + (h_{CT} + H + T_F))$$

Load Combinations

The table that follows summarizes the load combinations used for the stability and bearing checks of the wall. To check sliding and eccentricity, load combinations Strength Ia and Extreme Event IIa apply minimum load factors to the vertical loads and maximum load factors to the horizontal loads. To check bearing, load combinations Strength Ib, Strength IV, and Extreme Event IIb apply maximum load factors for both vertical and horizontal loads.

CT load is considered with Extreme Event II limit state when checking eccentricity, sliding, and bearing.

Note: LS_H , LS_V , and EH_H are not included in Extreme Event IIa or IIb. It is assumed that the horizontal earth pressure is not activated due to the force of the collision deflecting the wall away from the soil mass at the instant of collision.

 LS_V is not applied when analyzing sliding and overturning; rather, it is applied only for load combinations that are used to analyze bearing (AASHTO 11.5.6, Figure C11.5.6-3a).

The service limit state is used for the crack control check and settlement.

Total factored force effec	t: $Q = \Sigma \eta_i \gamma_i Q_i$			AASHTO 3.4.1-1
where Q_i = force effe	ects from loads calculated above			
Load Modifiers:	Ductility	η_D =	1.00	AASHTO 1.3.3-1.3.5
	Redundancy	$\eta_r =$	1.00	
	Operational Importance	η ₁ =	1.00	

Load Factors:

Load Combination	Ydc	γ_{EV}	γ _{LS_} v	ΥLS_H	Ŷен	Υст	Application
Strength la	0.90	1.00	-	1.75	1.50	-	Sliding, Eccentricity
Strength Ib	1.25	1.35	1.75	1.75	1.50	-	Bearing, Strength Design
Strength IV	1.50	1.35	-	-	1.50	-	Bearing
Extreme IIa	0.90	1.00	-	-	-	1.00	Sliding, Eccentricity
Extreme IIb	1.25	1.35	-	-	-	1.00	Bearing
Service I	1.00	1.00	1.00	1.00	1.00	-	Wall Crack Control

Summary of Load Groups:

	Vertical Loa	d & Moment	Horizontal Load & Moment		
Load Combination	V MV (kip/ft.) (kip-ft.)/ft.		H (kip/ft.)	MH (kip-ft.)/ft.	
Strength la	19.86	128.95	8.63	52.33	
Strength Ib	27.78	179.27	8.63	52.33	
Strength IV	27.57	171.34	6.59	35.69	
Extreme IIa	17.12	101.50	2.61	49.38	
Extreme IIb	23.32	137.87	2.61	49.38	
Service I	20.53	130.18	5.56	33.30	

Eccentricity (Overturning) Check

When a shear key is required to prevent sliding, the passive resistance shall be ignored.

EXAMPLE 11 - CAST IN PLACE CONCRETE CANTILEVER RETAINING WALL _____

Maximum eccentricity	/ limit:	e _{max} = B/3 = 3.33 ft.			AASHTO 10.	.6.3.3
		$e_{actual} = \frac{B}{2} - \frac{\Sigma M_V - \Sigma M_H}{\Sigma V}$				
Strength la:	X =	$(\Sigma M_V - \Sigma M_H) / \Sigma V = (128.95 - 52.33) / 19.86$	= 3.8	86	ft.	
	e =	10.0 / 2 - 3.86 = 1.14 ft.	e _{actual}	<	e _{max}	ОК
Extreme IIa:	X =	$(\Sigma M_V - \Sigma M_H) / \Sigma V = (101.50 - 49.38) / 17.12$	= 3.0	04	ft.	
	e =	10.0 / 2 - 3.04 = 1.96 ft.	e _{actual}	<	e _{max}	ОК

Bearing Resistance Check

When a shear key is required to prevent sliding, the passive resistance shall be ignored.

Vertical stress for wall supported on soil:				$v_{p} = \frac{\Sigma V}{B - 2}$	2 <i>e</i>			A	ASHTO 11.6.3.2-1
Nominal soil bea	ring resis	tance	q _n =	7.50	ksf				
Factored bearing	resistan	ce c	$q_R = \phi_b q_n =$	4.13	ksf				
		q _{R_EE}	$= \phi_{EE} q_n =$	7.50	ksf	Extreme eve	ent		
Strength Ib:	X =	(Σ M _V - Σ M _H) /	ΣV =	(179.27 -	52.33) /	27.78 =	4.57	ft.	
	e =	B / 2 - X =		10.0 / 2 -	4.57 =		0.43	ft.	
	σ _V =	ΣV / (B-2e) =		27.78 / (1	0.0 - 2 (0	0.43)) =	3.04	ksf	
							σ _V <	q _R	ОК
Strength IV:	X =	(Σ M _V - Σ M _H) /	ΣV =	(171.34 -	35.69) /	27.57 =	4.92	ft.	
	e =	B/2-X=		10.0 / 2 -	4.92 =		0.08	ft.	
	σ _V =	ΣV / (B-2e) =		27.57 / (1	0.0 - 2 (0) = ((80.0	2.80	ksf	
							σ _V <	q _R	ОК
Extreme IIb:	X =	(Σ M _V - Σ M _H) /	ΣV =	(137.87 -	49.38)/	23.32 =	3.79	ft.	
	e =	B / 2 - X =		10.0 / 2 -	3.79 =		1.21	ft.	
	σ _V =	ΣV / (B-2e) =		23.32 / (1	0.0 - 2 (1.21)) =	3.08	ksf	
							σ _V <	q _{R_I}	E OK
Sliding Check									AASHTO 10.6.3.4
Per AASHTO 11	.6.3.5, pa	ssive soil press	ure shall be	neglected	1.				
Strength Ia and E	Extreme I	<u>la:</u>							
Maximum total H	orizontal	force		ΣH =	8.63	kip / ft.			
Maximum total V	ertical for	ce		ΣV =	19.86	kip / ft.			
Nominal passive	resistanc	e		R_{ep} =	0.00	kip / ft.			AASHTO 11.6.3.5
For concrete cas	t against	soil		C =	1.00			AASH	ITO EQ 10.6.3.4-2
Nominal soil slidi	ng coeffi	cient	μ _n = tar	η φ _{sub} =	0.360				
Nominal sliding r	esistance	9	$R_{\tau} = C \Sigma$	$V\mu_n =$	1.0 (19.	86) (0.360) =	7	7.15	kip / ft.

Factored resistance against failure by sliding

$$R_{R} = \phi R_{n} = \phi_{\tau} R_{\tau} + \phi_{ep} R_{ep} = 1.00 (7.15) + 0.50 (0.0) = 7.15 \text{ kip / ft.}$$

$$R_{R} \leq \Sigma H \qquad \text{Shear Kev is Required}$$

Shear Key Design

- 1. Assume shear key dimensions.
- 2. Center line of the shear key is approximately B/3 from the heel edge of the footing; see BDM Section 11.5.1.
- Passive soil pressure at the toe shall be neglected; only include passive pressure due to the inert block (c) (see 3. AASHTO 11.6.3.5).
- Depth of inert block is taken to be the sum of the key depth and the effective wedge depth. This example follows 4. this methodology. Conservatively, effective wedge depth can be ignored, allowing inert block to be equal to shear key depth.
- 5. Per BDM Section 11.5.1, the top 1 ft. of fill at the toe shall be ignored for all design cases.
- 6. The Designer may choose to add weight of the shear key for eccentricity and bearing analysis once shear key dimensions are confirmed. For this example, weight of the key is ignored.

Shear key depth	d _{Key} =	1.00	ft.		
Shear key width	T _{Key} =	1.50	ft.		
Heel of footing to centerline shear	key K =	3.50	ft.		
Toe of footing to front face of shea	ir key X _{Key} =	5.75	ft.		
Soil cover above the footing toe	H _{TF} =	2.00	ft.		
Shear friction angle of subgrade	$\delta_{sub} = 2/3\varphi_{sub} =$	13.33	deg.		
Inert block depth	$c = d_{Key} + X_{Key} \tan(\delta_{sub}) =$	2.36	ft.		
Top of fill to top of shear key	y ₁ =	2.25	ft.		
Top of fill to bottom of inert block	y ₂ =	4.61	ft.		
Passive equivalent pressure	EFW (p) =	0.988	kcf		
Nominal soil sliding coefficient	μ _n =	0.360			
Coefficients of friction (factored):	$\mu_u = \phi_T \mu_n =$	1.00 (0.	360) =	0.360	(concrete-soil)
	$\mu_{u \ s-s} = \varphi_{T \ s-s} \ \mu_n =$	1.00 (0.	360) =	0.360	(soil-soil)

0.360

(extreme event)

Figure 2 - Shear Key

Shear resistance between soil and foundation:

$\phi_{\tau}R_{\tau} = C R_1 \mu_{us-s} \cos \delta_{Sub} + C R_2 \mu_u$	(Strength la)
$\phi_{EE}R_{\tau} = C R_1 \mu_{u EE} \cos \delta_{Sub} + C R_2 \mu_{u EE}$	(Extreme IIa)

$X = (\Sigma M_V - \Sigma I)$	$(M_H)/\Sigma V$		$e = \frac{B}{2} - X$		$\sigma_{v} = \frac{\Sigma V}{B - 2e}$					
Load Combination	ΣV (kip/ft.)	Σ MV (kip-ft./ft.)	Σ MH (kip-ft./ft.)	X (ft.)	e (ft.)	σ _V (ksf)	R1 (kip/ft.)	R2 (kip/ft.)	фRт (kip/ft.)	
Strength la	19.86	128.95	52.33	3.86	1.14	2.57	11.42	8.44	7.04	
Extreme IIa	17.12	101.50	49.38	3.04	1.96	2.82	9.84	7.28	6.07	

Passive resistance of soil available throughout the design life of structure:

 $R_{ep} = EFW(p)0.5 (y_1 + y_2) c = 0.988 * 0.5 (2.25 + 4.61) 2.36 =$ 8.00 kip

Factored resistar	nce against failure	by sliding:						AASHTC	0 10.6.3.4
Strength la:	Maximum total	Horizontal force	ΣH =	8.63	kip				
	$R_R = \varphi R_n = \varphi$	$\sigma_{\tau}R_{\tau} + \varphi_{ep}R_{ep} =$	7.04 + 0	.50 (8.0) =	11.04	kip)	
						R_R	>	ΣΗ	ОК
Extreme IIa:	Maximum total	Horizontal force	ΣH =	2.61	kip				
	$R_R = \varphi R_n = \varphi$	$EER_{\tau} + \varphi_{ep}R_{ep} =$	6.07 + 0	.50 (8.0) =	10.07	kip)	
						R_R	>	ΣΗ	ОК
2. STRENGTH	DESIGN					_			
Concrete compre	essive strength			f' _C =	4.50	ksi			
Yield strength of	the reinforcement			fy =	60.00	ksi			
Concrete unit we	eight			γ_c =	0.150	kcf			
Correction factor	for source aggreg	ate		K ₁ =	1.00			AASHT	0 5.4.2.4
Modulus of elast	icity of reinforceme	ent		E _s =	29000	ksi		AASHT	0 5.4.3.2
Modulus of elast	icity of concrete	$E_{C} = 120,00$	$00K_1\gamma_c^2 f_c^{\prime 0.3}$	³³ =	4435.31	ksi		AASHT	O 5.4.2.4
Modular ratio			n = E _s	/ E _C =	6.54			AASH	HTO 5.6.1
Compression zo	ne factor	$\beta 1 = 0.85 - (f'a)$	c – 4.0)0.0	5 =	0.825			AASHT	O 5.6.2.2
Resistance facto	r for flexural-tensio	on control		$\phi_f =$	0.90			AASHT	O 5.5.4.2
Resistance facto	r for shear-tension	control		φ _v =	0.90			AASHT	O 5.5.4.2
Design width				b=	12.00	in.			

2.1 STEM WALL DESIGN

Summary of Unfactored Horizontal Loads and Moments at the Bottom of the Stem:

Load Type	Description	H (kip/ft.)	Moment Arm (ft.)	MH (kip-ft.)/ft.
EH _H	Soil	3.74	5.00	18.70
LS _H	Surcharge	1.08	7.50	8.10

Summary of Load Groups:

	Horizontal Load & Moment				
Load Combination	Vu (kip/ft.)	Mu (kip-ft.)/ft.			
Strength Ib	7.50	42.23			
Service I	4.82	26.80			

It has been assumed that the load combination Strength Ib generates the maximum moment at the interface of the stem wall and footing. However, the Designer should check all possible load combinations, including extreme event, and select the combination that produces the maximum load for the design of the stem.

Note: The Designer/Engineer is encouraged to use engineering judgment to determine the moment and required area of reinforcing steel at other points of the stem for tall walls ($H \ge 10.0'$) to reduce the amount of steel required at higher elevations.

2.1.1 Flexure Design

AASHTO 5.6.3.2

Design of vertical reinforcement bars at back face of stem

Assumed bar size	Bar =	# 5			
Factored applied moment	M _{u Str} =	42.23	kip-ft. / ft.		
Concrete clear cover	r =	2.00	in.		
Bar diameter	d _b =	0.625	in.		
Bar area	A _b =	0.310	in ²		
Effective Depth	$d_e = T_{Bot} - r - d_b / 2 =$	1.75' (12) - 2" - 0.625" / 2 =	18.69	in.

Try # 5 @ 6.0" on center:

Design steel area	A _S = A _b b / spa =	0.310 (12) / 6 =		0.620	in²/ft.
Distance from compression fiber to neutral axis	$C_b = \frac{A_s f_y}{\beta_1 0.85 f_c' b} =$	0.620 (60) / (0.825*0.85*4.5*12) =	1	0.982	in.
Equivalent Stress Block	$a = \beta_1 C_b =$	0.825 (0.982) =		0.810	in.
Nominal Flexural Resistance	$M_n = A_S f_y \left(d_e - \frac{a}{2} \right) =$	0.620 (60) (18.69 - 0.810 / 2) =		56.68	kip-ft.
Factored Flexural Resistance	$M_R = \phi_f M_n =$	0.90 (56.68) =		51.01	kip-ft.
		M _B	>	M _{u Str}	ОК

Maximum Reinforcement: Provision deleted in 2005

Minimum Reinforcement:

AASHTO 5.6.3.3

The amount of tensile reinforcement shall be adequate to develop a factored flexural resistance,

 $M_{R}\text{,}$ at least equal to the lesser of $1.33M_{u\,Str}$ or M_{cr}

Member width	b =	12.00	in.
Member depth	d = T _{Bot} =	21.00	in.
Distance to Neutral Axis	$y_t = T_{Bot} / 2 =$	10.50	in.
Stem moment of inertia	$I_g = b d^3 / 12 =$	9261.0	in^4
Section modulus	$S_{nc} = S_c = I_g / y_t =$	882.0	in ³

CDOT Bridge Design Manual

EXAMPLE 11 - CAST IN PLACE CONCRETE CANTILEVER RETAINING WALL

Concrete Modulu	us of Rupture	$f_r = 0.24\sqrt{f_c'} =$	0.509	ksi	AASHTO 5.4.2.6
Cracking momer	$M_{cr} = y_3 [(y_1 f_r +$	$y_2 f_{cpe} \big) S_c - M_{dnc} ($	γ_c/γ_{nc} –	- 1)] :	AASHTO 5.6.3.3-1
Flexural cracking	y variability factor	y ₁ =	1.600		
Prestress variable	e factor	y ₂ =	0.000		
Ratio of specified tensile strength of	d minimum yield strength to of the reinforcement	ultimate _{y3} =	0.670	for A615, Grade 60 stee	I
Compressive stre	ess due to prestress force	$f_{\rm cpe}$ =	0.000	ksi	
Total unfactored	dead load moment	M _{dnc} =	0.000	kip-in.	
Cracking momer	ıt,				
M _{cr} =	0.670 [(1.60 * 0.509 + 0) *	882.0 - 0] / 12 =	40.11	kip-ft./ft controls	
Factored applied	moment *1.33	1.33 M _{u Str} =	56.17	kip-ft./ft.	
Factored flexural	resistance	M _R =	51.01	kip-ft./ft.	
			M _R	> min (Mcr, 1.33M	u Str) OK

Control of cracking by distribution of reinforcement:

AASHTO 5.6.7

AASHTO 5.7.3.3

Exposure condition class	2 Use Class 2 for the stem, Class 1 for the footing and key	
Exposure factor	$\gamma_e = 0.75$	
Thickness of concrete cover	$d_c = 2" + d_b / 2 = 2" + 0.625 / 2 = 2.31$ in.	
Reinforcement Ratio	$\rho = A_S / bd_e = 0.620 / (12 * 18.69) = 0.003$	
Modular ratio	n = 6.54	
	$k = \sqrt{2n\rho + (n\rho)^2} - n\rho = 0.179$	
	j = 1 - k/3 = 0.940	
Service applied moment	M _{u serv} = 26.80 kip-ft.	
Tensile stress in steel	$f_{ss} = M_{userv} * 12/(A_s j d_e) = 26.80(12) / (0.620^* 0.940^* 18.69) = 29.52$	ksi
	$\beta_s = 1 + \frac{d_c}{0.7(T_{Bot} - d_c)} = 1 + 2.31 / 0.7 (1.75^* 12 - 2.31) = 1.18$	
Maximum spacing	$s_{max} = \frac{700\gamma_e}{\beta_s f_{ss}} - 2d_c = 700 \ (0.75) \ / \ (1.18^* 29.52) - 2(2.31) = 10.45$	in.
Spacing provided	s _{prov} = 6.00 in.	
	s _{prov} < s _{max}	ОК

2.1.2 Shear Design

Shear typically does not govern the design of retaining walls. If shear becomes an issue, the thickness of the stem should be increased. Ignore benefits of the shear key (if applicable) and axial compression.

Factored shear load	V _{u str} =	7.50	kip/ft.	
Effective Depth	$d_v = max (d_e - C_b/2, 0.9 d_e, 0.72 T_{Bot}) =$	18.20	in (shear)	AASHTO 5.7.2.8

Per AASHTO 5.7.3.4.1, this section does not qualify for simplified procedure for determining shear resistance parameters. General procedure will be used (AASHTO 5.7.3.4.2).

 $\varepsilon_s = \frac{\left(\frac{|M_u|}{d_v} + 0.5N_u + |V_u - V_p| - A_{ps}f_{po}\right)}{E_s A_s + E_p A_{ps}}$ $\varepsilon_s = \frac{\left(\frac{|M_u|}{d_v} + 0.5N_u + |V_u|\right)}{E_s A_s}$

Removing all prestress steel unknowns, the equation will be as follows:

Longitudinal tensile strain in the section

CDOT Bridge Design Manual

			- ================	, ====================================
	Es	A_S		
Where				
Factored moment	$M_{\mu} = \max (M_{\mu etr}, V_{\mu etr} * d_{\nu}) =$	42.23	kip-ft./ft.	
Factored axial force	$N_{u} = 1.25 (DC_{1}+DC_{2}+DC_{4}) =$	-5.19	kip	
Area of steel on the flexural ter	$A_{c} = A_{c}$	= 0.620	in ² /ft	
Modulus of elasticity of reinforce	rement F. =	= 29,000	ksi	
I ongitudinal tensile strain in the section	r_s	= 0.00182	in / in	
		0.00102	,	
Parameter & for sections with no trans	verse reinforcement	ß — —	4.8 51	_
Whore		p = (1 +	$(750\varepsilon_s)(39+s_{xe})$)
Where,	۲ d	- 18.20	in	
Crack spacing parameter (1)	$s = min \rightarrow s = $	- 12.00	in (see below - #4	@ 12")
	3 _x - 11111 - 5 -	· 12.00		$(U_1 Z_1)$
		II A _{s_la}	$_{yer} \ge 0.003 D_e S_x -$	0.07 IN
	<u> </u>	- 18.20	in	
	S _x -	. 10.20	ILI	
	s – s <u>1.38</u> –	10.20	in (12.0 in c	a < 80.0 in
Crack spacing parameter (2)	$s_{xe} - s_x a_g + 0.63$	10.20	III (12.0 III S	$S_{ex} \leq 60.0 \text{ III}$
Where may aggregate size	a -	0.75	in	
Where, max aggregate size	a _g -	0.75		
Shear resistance parameter $\beta =$	4.8 51	1 81		
Shear resistance parameter $p =$	$(1+750\varepsilon_s)(39+s_{xe})$	1.01		AASITIO 5.7.5.4.2
Concrete density modification factor) -	1.00		
Concrete density modification factor	Λ -	1.00		AASHTO 5.4.2.0
Nominal Shoar Pagistanga V -	$-0.0316R\lambda f' hd - 0.03$	16 (2)(1)	1 50 (12)(18 20) -	26.50 kin
Factored Shear Resistance V_c -	$= - \frac{1}{2} \sqrt{2} = - \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} = - \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $	- 22.85	4.50 (12)(10.20) -	20.00 kip
Factored Shear Resistance	$_{\rm R} = \psi_{\rm v} v c = 0.90 (20.50) -$	23.05	кір	
Detaining well factings and stome are t	visionally uproinforced for above	r Confirm		
Retaining wan lootings and sterns are t	d has de sime			
transverse reinforcement is not require	a by design, 0.5 V _F	$\langle \rangle \rangle V_{u}$	str	AASHTU 5.7.2.3
	0.5	$v_R = 11.9$	33 KIP	0.11
			$0.5 V_R > V_u$	str OK
2.1.3 Shrinkage and Temperature Re	inforcement Design			AASHTO 5.10.6
Horizontal reinforcement at each face of	of stem and vertical reinforce	nent at fron	t face of stem	
T	-		20	
Iry #4 @ 12.0" on center:	Design steel area	$A_{\rm S} = 0.20$	JU in ²	
	Check A	$l_s \geq \frac{1.30}{2(l_s)}$	$\frac{b T_{Bot}}{T_{Bot}} = 0.08$	33 in ² OK
		Z(p +	I Bot.) Jv	

$\label{eq:check} {\sf Check} \qquad 0.11 \le A_s \le 0.60 \qquad \qquad {\sf OK}$

2.2 FOOTING HEEL DESIGN

The critical section for shear and moment is at the back face of the stem wall (C5.13.3.6). The heel is designed to carry its self weight and the soil block above it. Conservatively, it is common to ignore upward soil reaction under the footing heel, thus Strength 1b is not checked. For shear in footings, the provisions of 5.8.2.4 are not applicable, thus ϕ Vc \geq Vu.

Summary of Unfactored Vertical Loads and Moments at the Back Face of the Stem:

EXAMPLE 11 - CAST IN PLACE CONCRETE CANTILEVER RETAINING WALL

Load Type	Description	V (kip/ft.)	Moment Arm (ft.)	M (kip-ft.)/ft.
DC	Heel dead load	1.03	2.75	2.83
EV ₁	Vertical pressure from dead load of fill on heel	10.73	2.75	29.51

Summary of Load Groups:

	Vertical Load & Moment			
Load Combination	Vu (kip/ft.)	Mu (kip-ft.)/ft.		
Strength IV	16.03	44.08		
Service I	11.76	32.34		

By inspection, load combination Strength IV generates a maximum moment at the interface of the footing heel and stem wall. However, the Designer should check all possible load combinations and select the combination that produces the maximum load for the design of the footing.

For reinforcement design, follow the procedure outlined in Section 2.1. Exposure Class I can be used for cracking check. Results of the design are as follows (also shown on Figure 3):

Transverse horizontal bar at top of footing -	#6	@	6.0"
Longitudinal reinforcement, top and bottom of footing -	#4	@	12.0"

2.3 FOOTING TOE DESIGN

The critical section for shear is dy from front face of wall stem and, for moment, is at the front face of wall stem (C5.13.3.6). Section is designed to resist bearing stress acting on toe. This example conservatively ignores the soil on top of the toe. For shear in footings, the provisions of 5.8.2.4 are not applicable, thus $\phi Vc \ge Vu$.

Contro	olling loads:				
Maximum bearing stress (factored)		ed) $\sigma_V =$	3.08	ksf (from bearing resistance
Factored shear		$V_{u str} = \sigma_V S =$	8.47	kip/ft.	
Factored bending moment		$M_{u str} = V_u S/2 =$	11.65	kip-ft./ft.	
<u>Servic</u>	e loads:				
X =	$(\Sigma M_V - \Sigma M_H) / \Sigma V =$	(130.18 - 33.30) / 20).53 =	4.72	ft.
e =	B / 2 - X =	10.0 / 2 - 4.72 =		0.28	ft.
σ _V =	ΣV / (B-2e) =	20.53 / (10.0 - 2 (0.2	28)) =	2.17	ksf
Facto	red shear	$V_{u \text{ serv}} = \sigma_V S =$	5.97	kip/ft.	
Factored bending moment		$M_{u \text{ serv}} = V_u S/2 =$	8.21	kip-ft./ft.	

For reinforcement design, follow the procedure outlined in Section 2.1. Results of the design are as follows (also shown on Figure 3):

Transverse horizontal bar at bottom of toe -#5 @ 6.0" Note: Check that the toe length and footing depth can accommodate development length of the hooked bar past the design plane.

2.4 SHEAR KEY DESIGN

The critical section for shear and moment is at the interface with the bottom of the footing. Shear key reinforcing is designed to resist passive pressure determined in the sliding analysis. Passive pressure load resultant is located at a

CDOT Bridge Design Manual

check)

distance "z" from the bottom of footing, if using inclined wedge (see Figure 2).

Passive pressure against inert block $R_{ep} = 8.00$ Moment arm $z = (0.5K_p\gamma_s y_1c^2 + 0.333K_p\gamma_sc^3)/R_{ep} =$ $= [0.5 (7.60)(0.130)(2.25)(2.36) + 0.333 (7.60)(0.130)(2.36)^3] / 8.00 = 1.31$ Factored bending moment for key design $M_{u \, str} = 10.48$

For reinforcement design, follow the procedure outlined in Section 2.1. Results of the design are as follows (also shown on Figure 3):

Figure 3 - Final Wall Section

kip

ft.

kip-ft./ft.